symbio

SERTOUS ABOUT SOFTWARE

Qt — Introduction to GUI programming

Timo Strommer, May 27, 2010

“Traditional” desktop widgets
e (QtCreator UI designer introduction
e Signals and slots
e |ayouts
MVC pattern
e Model and view framework

e View delegates

Dialogs

symbio

symbio

Graphics view

e Graphics items

e Graphics object model

<symbio

QtCreator UI designer

This is interactive part...

Widgets walkthrough
How to add signal handlers
How to use layouts

Widget properties

symbio

<symbio

Event handling

symbio

Any object that inherits from QObject can
be target of events

e QCoreApplication::postEvent, QObject::Event

In GUI programs events are propagated to
widget, which has the focus

e Focus can be switched with mouse or tab key

e If widget doesn’t process the event, it is
forwarded to parent widget etc.

symbio

In order to process GUI events, you'll need
to

e (Create your own widget class, which inherits
from one of the regular widgets or

e Use event filters

Event filter can be added to any object

e QObject::installEventFilter(anotherQObject),;

e Events go to anotherQObject::eventFilter

symbio

Why filtering?

e You can suppress unwanted functionality

Although the result might not be something that users
are accustomed to

e You can install new functionality

Replace the original function

Do something in addition to original function

See helloevents from examples directory

symbio

In general, the required functionality is
available via signals & slots

e Events are needed when implementing custom
widgets

Need for event filters is quite rare

10

<symbio

Models and views

symbio

Model-view-controller

e Model takes care of storing the data
e View displays the data to user

e Controller takes care of user interaction

Why?
e Model can be tested separately

e Different views can be applied to same data

Portability of data

12

symbio

Model framework in core module

e Generic model interface (QAbstractlitemModel)

e More specialized models

List model (QAbstractListModel)

Table model (QAbstractTableModel)

e Ready-made models

QStandardIitemModel

QStringListModel

13

symbio

Views in GUI module

e Generic view interface (QAbstractlitemView)
Usually there’s no need to implement a view
e Ready-made views

QListView, QTableView, QTreeView

Can work with any type of model

e View delegates

Way to extend the ready-made views

14

Application works as controller

e No generic frameworks

symbio

15

symbio

Use ready-made QStandardIitemModel

e Usually simpler to use and works with any kind
of model (tree, list, column)

Create your own model

e Usually more efficient, as data can be directly
mapped from your data storage into the view

e Helpers for list and column models, tree a bit
more complicated

16

symbio

Each element in model is identified by
model index

Root

Each model index has row and column
identifiers and parent index

Root

0,0

1,0

2,0

0,0 |0,1
1,0 1,1
2,0 12,1

Root
0,0
— > 0, 0
1.0 L——> 0,0
0,0

1,0

17

symbio

List, table or tree of QStandardItem objects

e FEach item contains a string, which is shown in
the view

e Also other data may be associated with the item

Can be used without subclassing

e Mapping between data model and the standard
item model is needed

18

Standard item model - lists<Symblo

® Standard item model root is accessed with
invisibleRootItem()

® When used as list, all items are added
under the root item

QStringlist rowlList: Row1l
rowList << "Rowl" << "Row2" << "Row3"; Row?2

Row3

QStandardItemModel *1listModel = new QStandardItemModel({this);
QstandardItem *root = listModel-=invisibleRootItem():
foreach(QString str, rowList) {

root-=appendRow (new QStandardItem(str));
1
ui-=listView-=setModel (listModel);

19

Standard itern model - tablaSymblo

® In table model each row consists of
multiple items, but all rows are still added
under the invisibleRootitem()

1 2 3
0Stringlist rowlist;
rnwLiSt << "Rowl" =< "Row2" << "Row3"; 1 Rowl CDIl Row1l CDIZ Rowl CDI3
QStringlist columnlList;
columnlList << "Coll" << "Col2" << "Col3"; 2 Row2 Coll Row2 Col2 Row?2 Col3
QStandardItemModel *tableModel = new QStandardItemModel(this): 3 Row3 Coll Row3 Col2 Row3 Col3

QstandardItem *root = tableModel-=invisibleRootItem();
foreach (QString row, rowList]) {
QList<QStandardItem *= rowData;
foreach (0String column, columnList) {
rowData << new QStandardItem{row + " " + column);

}

root-=>appendRow (rowData);

ui-=>tableView-=setModel (tableModel):

Standard item model - tree<5ymb|0>

® In tree model each item may contain child

items in addition to having rows and

columns

QStringlist nodelist;

nodelist << "MNodel" << "Node2" << "Node3":
QStringlist rowlist;

rowList << "Rowl" << "Row2" << "Row3";
0Stringlist columnlList;

columnList << "Coll" =< "Col2" << "Col3";

QstandardItemModel *treeModel = new QStandardItemModel(this):
treeModel->setColumnCount(3); // Doesn't resize automatically
QstandardItem *root = treeModel-=invisibleRootItem();
int nodeIndex = 0;
foreach (Q5tring node, nodeList) {
QStandardItem *nodeltem = new QStandardItem{node);
root-=setChild (nodeIndex++, nodeltem):
foreach (0String row, rowlist) {
QList<QStandardItem *> rowData;
foreach (0QString column, columnList) {
rowData << new QStandardItem({row + " "
1

nodeItem-=appendRow (rowData)l;

+ column);

b
}

ui->treeView->setModel (treeModel);

1

— Nodel

Rowl Coll
Row?z Coll
Row3 Coll

Row?2 Coll
Row3 Coll

— Node3

Rowl Coll
Row?z Coll
Row3 Coll

Rowl Col2
Row2 Col2
Row3 Col2

‘Row1 Col2

Row?2 Col2
Row3 Col2

Rowl Col2
Row2 Col2
Row3 Col2

Rowl Col3
Row2 Col3
Row3 Col3

Rowl Col3
Row?2 Col3
Row3 Col3

Rowl Col3
Row2 Col3
Row3 Col3

21

symbio

If your data is already somehow
structured, it's usually a good idea to
implement the model directly on top of that

e Standard item model has a separate item tree,
which can be avoided

e With standard items any changes need to be
delegated between data and model

Check "model subclassing reference” from
QtCreator integrated help

22

symbio

To use a view, add one to your UI form
with Qt designer

Associate model to view from source code

ui-=tableView-=setModel (tableModel);

23

symbio

Model elements may contain any data

e Data is identified with role

Data that is shown in view has Qt::DisplayRole

User-defined data can be added with Qt::UserRole

e To store data into a standard item model, use
setData(something, Qt::UserRole) when setting
up the model

Data can later be accessed via a model index

24

Interaction with model <5Ymb|0>

® Model data is stored as QVariant type

e A container for other data types

e Type-safe way to pass data around Qt

e For example, an object pointer cannot used as string

e Variants should be used with helper functions

e qVariantFromValue, gVariantValue

// Map QObject-based object to a QVariant
MyObject *obj = new MyObject();
QVariant var = gVariantFromValue<QObject *=(obj);

/f Map a variant back to QObject
MyObject * = static_cast<MyObject *=(gVariantValue<=QObject *=(var)};

o * ®e

e ® o o 4 ,, .. *. @
III'.' . [] .

L o @ 25

symbio

Adding data to standard item —-based
model

QstandardItem *item = new QStandardItem(str):
MyObject *obj = new MyObject():
item-=setData(gVariantFromValue<Qobject *={obj));
root-=appendRow (item);

From that point on, obj can be accessed via
the model API

26

symbio

Each view has a selection model, which
tracks the selected items from that
particular view

e [s same model is displayed in multiple views,
each view still has separate selection model

Selection changes are notified as signals

e However, selection model is not a GUI widget,
SO signhals are not visible in designer

connect (ui->treeView->selectionModel(), SIGNAL(selectionChanged(QItemSelection,QItemSelection)),
SLOT (treeSelectionChanged (QItemSelection, QItemSelection)));

27

Interaction with model symbio

® The data that was stored into the model

can now be accessed from the selection
change slot

vold MainWindow::listSelectionChanged(const QItemSelection &selected, const QItemSelection &deselected)

{
OModelIndexList list = selected.indexes();
if (!list.isEmpty()) {

OModelIndex first = list.at(d):;

MyObject *data = static_cast<MyObject *=(gVariantValue<QObject *=(first.data(Qt::UserRolel));
// Do something with data

}
}

28

symbio

Standard item model elements can be
changed with model setData function

e (Qt::DisplayRole changes the content that's
shown on the views

e When model changes, all views are
automatically updated

vold MainWindow::listSelectionChanged(const QItemSelection &selected, const QItemSelection &deselected)
{
OModelIndexList list = selected.indexes();
if (1list.isEmpty()) {
QModelIndex first = list.at(0);
ui-=listView-=model()-=setData(first, "Selected!!!", Qt::DisplayRole};
}
}

29

GUI dialogs

Basic concepts and functionality

<symbio-

30

symbio

A dialog is a separate window, which
performs some user interaction

e Informs users about events

e Asks user for some kind of input

Modality

e A modal dialog blocks program interaction until
the dialog has been dismissed

e Modeless dialog can be left open into
background

31

Dialogs in Qt

<symbio-

® Qt provides built-in dialogs for simple tasks

e Displaying messages and alerts

e Asking for some input

OMessageBox: :StandardButton result = QMessageBox::question(
this, "Question", "Would you like to quit?",
OMessageBox::Yes | QMessageBox::Noj;

1t (result == QMessageBox::Yes) {

OMessageBox::warning(this, "Quit", "That's not working...",

QMessageBox::Close);
} else {
OQMessageBox::information(this, "Quit", "Good choice");

}

é Would you like to quit?

_ No | Yes

Fim)

;i That's not working...

6 Good choice

X

@ . 32

Dialogs in Qt <5Ymb|0>

¢ Input dialog can be used to ask for
different kinds of data

QString msg = QInputDialog::getText(this, "Query", "Enter message");
int value = QInputDialog::getInt(this, "Query", "Enter value", 0@, -100, 100);
OMessageBox::information(this, "Message"., "You said: " + msg +

" and chose " + 0String::number(value));

Enter message Enter value

You said: Hello and chose 57
or) > ;) O

% A P ! " "

e c e 00 ® ‘e o 33

symbio

If built-in dialogs are not suitable, new
dialogs can be created with help of
QtCreator form editor

34

Creating a new dialog

<symbio-

® Select the “"Class” version, not plain form

2 @ New File

Code less.
Create more.
Deploy everywhere.

— General
Text File

- C++
C++ Header File
C++ Source File
C++ Class

- Qt
Qt Designer Form
Qt QML File
Qt Script file
Qt Resource file

Ot Designer Form Class

Creates a Qt Designer form file (.ui) with a matching class.

35

Creating a new dialog

Choose a form template

‘Dialog with Buttons Bottom
Dialog with Buttons Right
Dialog without Buttons
Main Window
Widget
ODockWidget
QFrame
QGroupBox
QscrollArea
QMdiArea
OTabWidget
QToolBox
Q5tackedWidget
QWizard
QWizardPage
— _ .
MultiPageWidget

Embedded Design

Device: | None

screen sie: | ezt e—

<symbio-

o @ 36

Creating a new dialog <symbio-

2 @ Ot Designer Form Class

Choose a class name

Class

Class name: [Dialog]

Header file: [dialog.h

|
Source file: [dialog.cpp]
|

Form file: [dialog.ui
Path: [,I’homeftilIifqtpmjectsfhellodialogs] “
Configure..
wsBack, | Next> || Cancel
e * %,
o ®
s © ® ©® & * . ., .

Creating a new dialog symblo

¢ UI resource, header and source are created
similarly as when creating a new Qt project

e Inherits from QDialog

class Dialog : publif QCialog {
Q_OBJECT

public:
Dialog(QWidget *parent = 0);
~Dialog();

protected:
vold changeEvent (QEvent *e):

private:
Ui::Dialog *ui;

L¥

38

symbio

A dialog must always be explicitly shown

e Modal dialogs may use exec, which returns
whether dialog was accepted or rejected

e Modeless dialogs use show and need signal-slot
connection to see whether accepted or rejected

39

symbio

Modal dialogs can be allocated from stack

e Exeption to normal QODbject rules

e The exec function, which displays the dialog
starts a new nested event loop, which quits
when the dialog is dismissed

Dialog d:
int result = d.exec();
if (result == QDialog::Accepted) {

OMessageBox: :information(this, “"Message”, "Got OK"):
} else {
QMessageBox::1nformation(this, "Message", "Got cancel");

}

40

Modeless dialog symbio

® Modeless dialog needs to be allocated from
heap (or as class member variable)

e Needs to be alive until dialog is closed

Dialog *d = new Dialog(this);
d-=setModal(false);

d-=show(}; vold MainWindow::dialogAccepted()
d->raise(); {
d-=activateWindow(); OQMessageBox: :information(this, "Message", "Got OK");

delete sender();
connect(d, SIGNAL(accepted()). SLOT(dialogAccepted())]); 1
connect(d, SIGNAL(rejected())., SLOT(dialogRejected(})]);

inwindow: :dialogRejected()

OMessageBox::information(this, "Message", "Got cancel");
delete sender();

® Sender of signal is the dialog

41

symbio

Get the hellodialogs example

e Add two text input widgets into it using Qt form
editor

e If user selects Ok, display the content of the two
text input widgets in a message box after the
input dialog has been closed

Try to find an alternative way to access and
delete the modeless dialog from the slots

e Instead of using QODbject::sender()

42

Settings

Storing the GUI state

<symbio-

43

symbio

In general, it's nice if the application opens
into the same state it was left last time

e (QSettings helps with that

Principle is quite simple, load data in
constructor, save in destructor

e Some Ul components seem to cause problems

View column width doesn’t change until view is visible

Also possible to load data in the main window
showEvent

44

symbio

Settings object takes two parameters when
constructed

e Company name and program name

Each value is a QVariant

e To save something, call setValue

e To load, call value and provide a default
QSettings settings("Symbio", "MusicLibraryGUI");
settings.setValue("Combo"”, ul-=comboBox-=currentIndex());

QSettings settings("Symbio", "MusiclLibraryGUI");
ui-=comboBox-=>setCurrentIndex (settings.value("Combo", ©).toInt(});

45

Settings

® Settings are stored into a text file

e ~/.config/<company>/<program>.conf

5 ¥ % | < atilli || config

P

sktop fombe
RS MusicLibraryGUI.
fwork conf

ppy Drive

D O @ MusicLibraryGUl.conf (~/.config/s

File Edit View Search Tools Documents Help

L& laopen v Disave &

| 7] MusicLibraryGUl.conf 3%

[General]
Combo=6|

symbio

46

<symbio

Graphics view

symbio

Why graphics view?

e Traditional widgets are not designed for
hardware-accelerated animated UI's that users
nowadays expect from mobile devices

What is graphics view?
e Higher-level abstraction over QPainter used by
"traditional” widgets

Based on graphics items, which are cheap to paint
compared to painting a QWidget

48

symbio

Can also be integrated with QWidgets

Uses Model-View-Controller pattern

e Multiple views can observe the same model
(called graphics scene)

Used by

e KDE plasma desktop

e Nokia mobile UI frameworks (Orbit, DUI)

49

symbio

Problems

e No designer support

e (QtCreator can add a Graphics View widget to
the form, but that’s about it

50

symbio

Today’s GUI’s usually need pictures,
animations and other fancy stuff

e (Qt has animations framework, which works with
QObject properties

e Pictures are usually stored in resources, which
are compiled into the binary during build

51

symbio

All QObject-based classes support
properties

e A property is QVariant type, which is stored in a
dictionary that uses C-style zero-terminated
character arrays as keys

e Properties can be dynamic or static

Dynamic properties are assigned at run-time

Static properties are defined at compile time and
processed by the meta-object compiler

52

symbio

Static properties are declared into class
header using Q_PROPERTY macro

class AnimatedPixmap : public QObject, public QGraphicsPixmapItenm

Q_OBJECT
0 PROPERTY (qreal rotation READ rotation WRITE setRotation)

The above statement defines a property

e Type is greal, which is a floating-point number
e Name is rotation
e When read, rotation function is called

e When changed, setRotation function is called

53

Object properties symbio

® Static properties are used for example by
QtCreator GUI designer

4‘- e X
Property Value
styleSheet
+ locale English, UnitedStates
+ inputMethodHints ImhNone
+ text Modal
+ icon
- iconSize 16 x 16
Width 16
Height 16
+ shortcut
checkable

54

symbio

When C++ objects are exported and used
from QtScript or QML languages, the
properties are automatically available

e Signals & slots also

Easiest way to use the animation
framework is by modifying object
properties

55

symbio

A property animation is created with help
of QPropertyAnimation class

e Specify which object and which property to
update

e Specify duration and start and end points

e Start the animation

Optional things
e Specify number of loops (or infinite)

e Specify an easing curve

56

symbio

When a property animation is started, the
specified property is updated at reqgular
intervals

e Starting from start value, ending at end value
and lasting for the duration specified

After animation is finished, it either stops
or runs a new loop

57

Property animations symblo

® Property animation provides some signals
that can be used to monitor the state

e finished is particularly interesting

e If animation is repeated, there might be a need to
reverse the animation to avoid a jump

e Just change direction and start again

animation = new QPropertyAnimation(this, "scale", this);
animation-=setStartValue(d.9);

animation-=setEndValue(l.1);

animation-=setDuration (10000);

connect (animation, SIGNAL (finished()), SLOT(animationFinished())):
animation-=start();

if (animation->direction() == QPropertyAnimation::Backward) {
animation-=setDirection(QPropertyAnimation: :Forward);
} else {

animation-»setDirection(QPropertyAnimation: :Backward);
}

animation-=start():

58

symbio

Although presented here, animations
framework is in no way related to graphics
framework

e Anything that requires timer-based events can
be scheduled with the animations

59

symbio

Resource file specifies a collection of data
that should be bundled into the binary file

e [For example pictures and localization data

QtCreator can help add resources to
project

e Qt project file has RESOURCES statement,
which contains a list of .grc files

e grc file is a text file, which is parsed by resource
compiler during project build

60

Resource files <symb|0>

- Version Control a
CVS Checkout
Git Repository Clone
Gitorious Repository Clone
Subversion Checkout
-t
Qt Designer Form
Qt Designer Form Class
Ot QML File
Qt Script file
{0t Resource file
- Projects
B Import of Makefile-based Project
Code less. B OML Application
Create more. B Import of existing QML directory
Deploy everywhere. M Empty Qt4 Project

[B T, TN N Y

Creates a Qt Resource file (.qgrc).

* + s s 00 @ P 61

Resource files <symb|0>

D @ New Qt Resource file

Choose the location

Name: | graphicsresources |

Path: |'eftillifqtpmject5fh ellographics | Browse... |

Code less.
Create more.
Deploy everywhere.

62

Resource files symbio

e After resource file has been created, add a
prefix into it and a file under the prefix

« ¢ hellographics.qrc = ; . iy -
. Lg mmOpen v ZZSave &)
= |
¥ pics/lemonade.jpg [7 hellographics.qrc %

<RCC=
<gresource prefix="/"=
<file=pics/lemonade. jpg</Tile>
</gresource=
</RCC>|

® Resource is identified with a path, quite
similarly as a file

o :/<prefix>/<resource-name>

63

symbio

Graphics framework is based on graphics
items and graphics layouts

e (Quite similar functionality as with widgets and
layouts, but not based on widgets

e Basic items

Shapes (like rectangle, ellipse, polygon), picture, text
e Graphics widgets

Similar to QWidget, but in context of graphics scene
e Proxy widget

Embeds "traditional” widgets into graphics scene

64

symbio

Graphics items can be target of events,
similarly as a widget

Unlike widgets a graphics item can be
transformed

e Move, rotate, shear, scale, project, etc.

e Multiple transformations can be queued

65

symbio

Graphics items are arranged into a tree
hierarchy, similarly as widgets

e Jtems may have a parent and a number of
children

Item position is relative to parent item coordinates

If item doesn’t have parent, position is relative to
scene coordinates

e When a transformation is applied to an item, it
is also applied to the child items

66

symbio

Graphics items get event notifications when
user interacts with the scene

e Similarly as with widgets, the graphics item
needs to be subclassed and the required event
handler functions implemented

67

symbio

A graphics scene is a container for items

e The surface where the items are drawn

Each item has a z-order, higher z-order is drawn on top
of lower one

e Propagates events (for example mouse) to
correct graphics items for processing

Regardless of transformations

e Scene can be displayed in multiple views

68

symbio

A graphics view is a QWidget

e Displays the contents of a graphics scene or a
part of it

A transform can be applied to the view

e Transforms all items within the viewed part of
the scene

69

symbio

Illustrates some aspects of the graphics
view and property animations

e Adding items to scene and other items
e Moving scene elements around
e Animating transforms

e Event handling

70

<symbio

Programming exercise

71

Programming exercise

<symbio-

® Get musiclibrary-day4-pre from the web
page and open the root project file into

QtCreator

e Add make install build step

Build Steps
QMake: gmake-qt4 musiclibrary.pro -spec linux-g++ -r CONFIG+=debug
Make: make -w in fhomeftilli/musiclibrary-day4-pre

Make: make install -w in /homeftilli/musiclibrary-day4-pre

Override make: [

Make arguments: [install

e 0 O ® o o ., >
'.'
I'..-

Programming exercise <5ymb|0>

® Add GUI run configuration, which runs
musiclibrarygui_from the bin directory

Run Settings

Edit run configuration: _ - -

Running executable: fhome/tilli/musiclibrary-day4-pre/bin/musiclibrarygui

fhomeftilli/musiclibrary-day4-pre/bin/musiclibrarygui
fhomeftilli/musiclibrary-day4-pre/bin |
|

L * @ -
.. . . . L - 5 . L)
#
]

Prog

ramming exercise symblo

® Several models are created in the
constructor

Add some views to visualize the model contents

/4 Build a music library
MusicLibrary *library = MusicLibraryBuilder::build(this);

// Create a library model object
MusicLibraryModel *model = new MusicLibraryModel(library);

// Tree model of all objects

QAbstractItemModel * = model-=tree();

/4 List of artists, records and songs
QabstractItemModel * = model-=artists();
QabstractItemModel * = model-=records();
QAbstractItemModel * = model-=songs();

74

symbio

Each Record in the music library has a
cover image

e Add a graphics view, which displays the cover
images

75

<symbio-

ABOUT SOFTWARE

