
1

SERIOUS ABOUT SOFTWARE

Qt – Introduction to GUI programming

Timo Strömmer, May 27, 2010



Contents

• “Traditional” desktop widgets

• QtCreator UI designer introduction

• Signals and slots

• Layouts

• MVC pattern 

• Model and view framework

• View delegates

• Dialogs



Contents

• Graphics view

• Graphics items

• Graphics object model

3



QtCreator UI designer
Building ”traditional” desktop UI’s

4



UI designer introduction

• This is interactive part…

• Widgets walkthrough

• How to add signal handlers

• How to use layouts

• Widget properties

5



Event handling

6



Events

• Any object that inherits from QObject can

be target of events

• QCoreApplication::postEvent, QObject::Event

• In GUI programs events are propagated to 

widget, which has the focus

• Focus can be switched with mouse or tab key

• If widget doesn’t process the event, it is 

forwarded to parent widget etc.

7



Events

• In order to process GUI events, you’ll need

to

• Create your own widget class, which inherits

from one of the regular widgets or

• Use event filters

• Event filter can be added to any object

• QObject::installEventFilter(anotherQObject);

• Events go to anotherQObject::eventFilter

8



Event filters

• Why filtering?

• You can suppress unwanted functionality

• Although the result might not be something that users

are accustomed to

• You can install new functionality

• Replace the original function

• Do something in addition to original function

• See helloevents from examples directory

9



Notes about events

• In general, the required functionality is 

available via signals & slots

• Events are needed when implementing custom

widgets

• Need for event filters is quite rare

10



Models and views
Displaying data in GUI

11



MVC pattern

• Model-view-controller

• Model takes care of storing the data

• View displays the data to user

• Controller takes care of user interaction

• Why?

• Model can be tested separately

• Different views can be applied to same data

• Portability of data

12



MVC in Qt - model

• Model framework in core module

• Generic model interface (QAbstractItemModel)

• More specialized models

• List model (QAbstractListModel)

• Table model (QAbstractTableModel)

• Ready-made models

• QStandardItemModel

• QStringListModel

13



MVC in Qt - view

• Views in GUI module

• Generic view interface (QAbstractItemView)

• Usually there’s no need to implement a view

• Ready-made views

• QListView, QTableView, QTreeView

• Can work with any type of model

• View delegates

• Way to extend the ready-made views

14



MVC in Qt - controller

• Application works as controller

• No generic frameworks

15



Model framework

• Use ready-made QStandardItemModel

• Usually simpler to use and works with any kind

of model (tree, list, column)

• Create your own model

• Usually more efficient, as data can be directly

mapped from your data storage into the view

• Helpers for list and column models, tree a bit

more complicated

16



Model basics

• Each element in model is identified by

model index

• Each model index has row and column

identifiers and parent index

17

Root

0, 0

1, 0

2, 0

Root

0, 0

1, 0

2, 0

0, 1

1, 1

2, 1

Root

0, 0

1, 0

0, 0

0, 0

0, 0

1, 0



Standard item model

• List, table or tree of QStandardItem objects

• Each item contains a string, which is shown in 

the view

• Also other data may be associated with the item

• Can be used without subclassing

• Mapping between data model and the standard

item model is needed

18



Standard item model - lists

• Standard item model root is accessed with

invisibleRootItem()

• When used as list, all items are added

under the root item

19



Standard item model - table

• In table model each row consists of 

multiple items, but all rows are still added

under the invisibleRootItem()

20



Standard item model - tree

• In tree model each item may contain child

items in addition to having rows and 

columns

21



Creating own models

• If your data is already somehow

structured, it’s usually a good idea to 

implement the model directly on top of that

• Standard item model has a separate item tree, 

which can be avoided

• With standard items any changes need to be

delegated between data and model

• Check ”model subclassing reference” from

QtCreator integrated help

22



Using the view

• To use a view, add one to your UI form

with Qt designer

• Associate model to view from source code

23



Interaction with model

• Model elements may contain any data

• Data is identified with role

• Data that is shown in view has Qt::DisplayRole

• User-defined data can be added with Qt::UserRole

• To store data into a standard item model, use

setData(something, Qt::UserRole) when setting

up the model

• Data can later be accessed via a model index

24



Interaction with model

• Model data is stored as QVariant type

• A container for other data types

• Type-safe way to pass data around Qt

• For example, an object pointer cannot used as string

• Variants should be used with helper functions

• qVariantFromValue, qVariantValue

25

SomeData

QVariant



Interaction with model

• Adding data to standard item –based

model

• From that point on, obj can be accessed via 

the model API

26



Interaction with model

• Each view has a selection model, which

tracks the selected items from that

particular view

• Is same model is displayed in multiple views, 

each view still has separate selection model

• Selection changes are notified as signals

• However, selection model is not a GUI widget, 

so signals are not visible in designer

27



Interaction with model

• The data that was stored into the model

can now be accessed from the selection

change slot

28



Updating model elements

• Standard item model elements can be

changed with model setData function

• Qt::DisplayRole changes the content that’s

shown on the views

• When model changes, all views are

automatically updated

29



GUI dialogs
Basic concepts and functionality

30



Dialogs overview

• A dialog is a separate window, which

performs some user interaction

• Informs users about events

• Asks user for some kind of input

• Modality

• A modal dialog blocks program interaction until

the dialog has been dismissed

• Modeless dialog can be left open into 

background

31



Dialogs in Qt

• Qt provides built-in dialogs for simple tasks

• Displaying messages and alerts

• Asking for some input

32



Dialogs in Qt

• Input dialog can be used to ask for 

different kinds of data

33



Dialogs in Qt

• If built-in dialogs are not suitable, new 

dialogs can be created with help of 

QtCreator form editor

34



Creating a new dialog

• Select the ”Class” version, not plain form

35



Creating a new dialog

36



Creating a new dialog

37



Creating a new dialog

• UI resource, header and source are created

similarly as when creating a new Qt project

• Inherits from QDialog

38



QDialog functionality

• A dialog must always be explicitly shown

• Modal dialogs may use exec, which returns

whether dialog was accepted or rejected

• Modeless dialogs use show and need signal-slot

connection to see whether accepted or rejected

39



Modal dialog

• Modal dialogs can be allocated from stack

• Exeption to normal QObject rules

• The exec function, which displays the dialog

starts a new nested event loop, which quits

when the dialog is dismissed

40



Modeless dialog

• Modeless dialog needs to be allocated from

heap (or as class member variable)

• Needs to be alive until dialog is closed

• Sender of signal is the dialog

41



Short exercise

• Get the hellodialogs example

• Add two text input widgets into it using Qt form

editor

• If user selects Ok, display the content of the two

text input widgets in a message box after the 

input dialog has been closed

• Try to find an alternative way to access and 

delete the modeless dialog from the slots

• Instead of using QObject::sender()

42



Settings
Storing the GUI state

43



Settings

• In general, it’s nice if the application opens

into the same state it was left last time

• QSettings helps with that

• Principle is quite simple, load data in 

constructor, save in destructor

• Some UI components seem to cause problems

• View column width doesn’t change until view is visible

• Also possible to load data in the main window

showEvent

44



Settings

• Settings object takes two parameters when

constructed

• Company name and program name

• Each value is a QVariant

• To save something, call setValue

• To load, call value and provide a default

45



Settings

• Settings are stored into a text file

• ~/.config/<company>/<program>.conf

46



Graphics view
Creating ”non-traditional” UI’s

47



Introduction

• Why graphics view?

• Traditional widgets are not designed for 

hardware-accelerated animated UI’s that users

nowadays expect from mobile devices

• What is graphics view?

• Higher-level abstraction over QPainter used by

”traditional” widgets

• Based on graphics items, which are cheap to paint

compared to painting a QWidget

48



Introduction

• Can also be integrated with QWidgets

• Uses Model-View-Controller pattern

• Multiple views can observe the same model

(called graphics scene)

• Used by

• KDE plasma desktop

• Nokia mobile UI frameworks (Orbit, DUI)

49



Introduction

• Problems

• No designer support

• QtCreator can add a Graphics View widget to 

the form, but that’s about it

50



Back to Qt core

• Today’s GUI’s usually need pictures, 

animations and other fancy stuff

• Qt has animations framework, which works with

QObject properties

• Pictures are usually stored in resources, which

are compiled into the binary during build

51



Object properties

• All QObject-based classes support

properties

• A property is QVariant type, which is stored in a 

dictionary that uses C-style zero-terminated

character arrays as keys

• Properties can be dynamic or static

• Dynamic properties are assigned at run-time

• Static properties are defined at compile time and 

processed by the meta-object compiler

52



Object properties

• Static properties are declared into class

header using Q_PROPERTY macro

• The above statement defines a property

• Type is qreal, which is a floating-point number

• Name is rotation

• When read, rotation function is called

• When changed, setRotation function is called

53



Object properties

• Static properties are used for example by

QtCreator GUI designer

54



Why properties?

• When C++ objects are exported and used

from QtScript or QML languages, the 

properties are automatically available

• Signals & slots also

• Easiest way to use the animation

framework is by modifying object

properties

55



Property animations

• A property animation is created with help 

of QPropertyAnimation class

• Specify which object and which property to 

update

• Specify duration and start and end points

• Start the animation

• Optional things

• Specify number of loops (or infinite)

• Specify an easing curve

56



Property animations

• When a property animation is started, the 

specified property is updated at regular

intervals

• Starting from start value, ending at end value

and lasting for the duration specified

• After animation is finished, it either stops

or runs a new loop

57



Property animations

• Property animation provides some signals

that can be used to monitor the state

• finished is particularly interesting

• If animation is repeated, there might be a need to 

reverse the animation to avoid a jump

• Just change direction and start again

58



Animation notes

• Although presented here, animations

framework is in no way related to graphics

framework

• Anything that requires timer-based events can

be scheduled with the animations

59



Resource files

• Resource file specifies a collection of data 

that should be bundled into the binary file

• For example pictures and localization data

• QtCreator can help add resources to 

project

• Qt project file has RESOURCES statement, 

which contains a list of .qrc files

• qrc file is a text file, which is parsed by resource

compiler during project build

60



Resource files

61



Resource files

62



Resource files

• After resource file has been created, add a 

prefix into it and a file under the prefix

• Resource is identified with a path, quite

similarly as a file

• :/<prefix>/<resource-name>

63



Back to graphics

• Graphics framework is based on graphics

items and graphics layouts

• Quite similar functionality as with widgets and 

layouts, but not based on widgets

• Basic items

• Shapes (like rectangle, ellipse, polygon), picture, text

• Graphics widgets

• Similar to QWidget, but in context of graphics scene

• Proxy widget

• Embeds ”traditional” widgets into graphics scene

64



Graphics item vs. widget

• Graphics items can be target of events, 

similarly as a widget

• Unlike widgets a graphics item can be

transformed

• Move, rotate, shear, scale, project, etc.

• Multiple transformations can be queued

65



Graphics items

• Graphics items are arranged into a tree

hierarchy, similarly as widgets

• Items may have a parent and a number of 

children

• Item position is relative to parent item coordinates

• If item doesn’t have parent, position is relative to 

scene coordinates

• When a transformation is applied to an item, it

is also applied to the child items

66



Graphics item events

• Graphics items get event notifications when

user interacts with the scene

• Similarly as with widgets, the graphics item

needs to be subclassed and the required event

handler functions implemented

67



Graphics scene

• A graphics scene is a container for items

• The surface where the items are drawn

• Each item has a z-order, higher z-order is drawn on top 

of lower one

• Propagates events (for example mouse) to 

correct graphics items for processing

• Regardless of transformations

• Scene can be displayed in multiple views

68



Graphics view

• A graphics view is a QWidget

• Displays the contents of a graphics scene or a 

part of it

• A transform can be applied to the view

• Transforms all items within the viewed part of 

the scene

69



Graphics example

• Illustrates some aspects of the graphics

view and property animations

• Adding items to scene and other items

• Moving scene elements around

• Animating transforms

• Event handling

70



Programming exercise
Add GUI for music library

71



Programming exercise

• Get musiclibrary-day4-pre from the web

page and open the root project file into 

QtCreator

• Add make install build step

72



Programming exercise

• Add GUI run configuration, which runs

musiclibrarygui from the bin directory

73



Programming exercise

• Several models are created in the 

constructor

• Add some views to visualize the model contents

74



Programming exercise

• Each Record in the music library has a 

cover image

• Add a graphics view, which displays the cover

images

75



76


